Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2001 Dec;57(5-6):579-92.
doi: 10.1007/s00253-001-0844-0.

Bioinformatic tools for DNA/protein sequence analysis, functional assignment of genes and protein classification

Affiliations
Review

Bioinformatic tools for DNA/protein sequence analysis, functional assignment of genes and protein classification

B H Rehm. Appl Microbiol Biotechnol. 2001 Dec.

Abstract

The development of efficient DNA sequencing methods has led to the achievement of the DNA sequence of entire genomes from (to date) 55 prokaryotes, 5 eukaryotic organisms and 10 eukaryotic chromosomes. Thus, an enormous amount of DNA sequence data is available and even more will be forthcoming in the near future. Analysis of this overwhelming amount of data requires bioinformatic tools in order to identify genes that encode functional proteins or RNA. This is an important task, considering that even in the well-studied Escherichia coli more than 30% of the identified open reading frames are hypothetical genes. Future challenges of genome sequence analysis will include the understanding of gene regulation and metabolic pathway reconstruction including DNA chip technology, which holds tremendous potential for biomedicine and the biotechnological production of valuable compounds. The overwhelming volume of information often confuses scientists. This review intends to provide a guide to choosing the most efficient way to analyze a new sequence or to collect information on a gene or protein of interest by applying current publicly available databases and Web services. Recently developed tools that allow functional assignment of genes, mainly based on sequence similarity of the deduced amino acid sequence, using the currently available and increasing biological databases will be discussed.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources