Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Sep 28;428(1):37-44.
doi: 10.1016/s0014-2999(01)01291-2.

The iron chelator pyridoxal isonicotinoyl hydrazone inhibits mitochondrial lipid peroxidation induced by Fe(II)-citrate

Affiliations

The iron chelator pyridoxal isonicotinoyl hydrazone inhibits mitochondrial lipid peroxidation induced by Fe(II)-citrate

N C Santos et al. Eur J Pharmacol. .

Abstract

Pyridoxal isonicotinoyl hydrazone (PIH) is able to prevent iron-mediated hydroxyl radical formation by means of iron chelation and inhibition of redox cycling of the metal. In this study, we investigated the effect of PIH on Fe(II)-citrate-mediated lipid peroxidation and damage to isolated rat liver mitochondria. Lipid peroxidation was quantified by the production of thiobarbituric acid-reactive substances (TBARS) and by antimycin A-insensitive oxygen consumption. PIH at 300 microM induced full protection against 50 microM Fe(II)-citrate-induced loss of mitochondrial transmembrane potential (deltapsi) and mitochondrial swelling. In addition, PIH prevented the Fe(II)-citrate-dependent formation of TBARS and antimycin A-insensitive oxygen consumption. The antioxidant effectiveness of 100 microM PIH (on TBARS formation and mitochondrial swelling) was greater in the presence of 20 or 50 microM Fe(II)-citrate than in the presence of 100 microM Fe(II)-citrate, suggesting that the mechanism of PIH antioxidant action is linked with its Fe(II) chelating property. Finally, PIH increased the rate of Fe(II) autoxidation by sequestering iron from the Fe(II)-citrate complex, forming a Fe(III)-PIH, complex that does not participate in Fenton-type reactions and lipid peroxidation. These results are of pharmacological relevance since PIH is a potential candidate for chelation therapy in diseases related to abnormal intracellular iron distribution and/or iron overload.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources