Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2002 Jan 11;290(1):1-10.
doi: 10.1006/bbrc.2001.5849.

Molecular regulation of muscle cachexia: it may be more than the proteasome

Affiliations
Review

Molecular regulation of muscle cachexia: it may be more than the proteasome

Per-Olof Hasselgren et al. Biochem Biophys Res Commun. .

Abstract

Muscle cachexia induced by sepsis, severe injury, cancer, and a number of other catabolic conditions is mainly caused by increased protein degradation, in particular breakdown of myofibrillar proteins. Ubiquitin-proteasome-dependent proteolysis is the predominant mechanism of muscle protein loss in these conditions, but there is evidence that several other regulatory mechanisms may be important as well. Some of those mechanisms are reviewed in this article and they include pre-, para-, and postproteasomal mechanisms. Among preproteasomal mechanisms, mediators, receptor binding, signaling pathways, activation of transcription factors, and modification of proteins are important. Several paraproteasomal mechanisms may influence the trafficking of ubiquitinated proteins and their interaction with the proteasome, including the expression and activity of the COP9 signalosome, the carboxy terminus of heat shock protein 70-interacting protein (CHIP) and valosin-containing protein (VCP). Finally, because the proteasome does not degrade proteins completely into free amino acids but into peptides, postproteasomal degradation of peptides by the giant protease tripeptidyl peptidase II (TPP II) and various aminopeptidases is important in muscle catabolism. Thus, multiple mechanisms and regulatory steps may influence the breakdown of ubiquitinated muscle proteins by the 26S proteasome.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources