The evolution of human influenza viruses
- PMID: 11779385
- PMCID: PMC1088562
- DOI: 10.1098/rstb.2001.0999
The evolution of human influenza viruses
Abstract
The evolution of influenza viruses results in (i) recurrent annual epidemics of disease that are caused by progressive antigenic drift of influenza A and B viruses due to the mutability of the RNA genome and (ii) infrequent but severe pandemics caused by the emergence of novel influenza A subtypes to which the population has little immunity. The latter characteristic is a consequence of the wide antigenic diversity and peculiar host range of influenza A viruses and the ability of their segmented RNA genomes to undergo frequent genetic reassortment (recombination) during mixed infections. Contrasting features of the evolution of recently circulating influenza AH1N1, AH3N2 and B viruses include the rapid drift of AH3N2 viruses as a single lineage, the slow replacement of successive antigenic variants of AH1N1 viruses and the co-circulation over some 25 years of antigenically and genetically distinct lineages of influenza B viruses. Constant monitoring of changes in the circulating viruses is important for maintaining the efficacy of influenza vaccines in combating disease.
Similar articles
-
Recent changes among human influenza viruses.Virus Res. 2004 Jul;103(1-2):47-52. doi: 10.1016/j.virusres.2004.02.011. Virus Res. 2004. PMID: 15163487 Review.
-
Antigenic drift and variability of influenza viruses.Med Microbiol Immunol. 2002 Dec;191(3-4):133-8. doi: 10.1007/s00430-002-0132-3. Epub 2002 Oct 25. Med Microbiol Immunol. 2002. PMID: 12458347
-
[Molecular characterization of human influenza viruses--a look back on the last 10 years].Berl Munch Tierarztl Wochenschr. 2006 Mar-Apr;119(3-4):167-78. Berl Munch Tierarztl Wochenschr. 2006. PMID: 16573207 Review. German.
-
Reassortment and evolution of current human influenza A and B viruses.Virus Res. 2004 Jul;103(1-2):55-60. doi: 10.1016/j.virusres.2004.02.013. Virus Res. 2004. PMID: 15163489
-
Ecological and immunological determinants of influenza evolution.Nature. 2003 Mar 27;422(6930):428-33. doi: 10.1038/nature01509. Nature. 2003. PMID: 12660783
Cited by
-
Broad neutralizing activity of a human monoclonal antibody against H7N9 strains from 2013 to 2017.Emerg Microbes Infect. 2018 Nov 14;7(1):179. doi: 10.1038/s41426-018-0182-2. Emerg Microbes Infect. 2018. PMID: 30425238 Free PMC article.
-
Transmembrane domain of IFITM3 is responsible for its interaction with influenza virus HA2 subunit.Virol Sin. 2022 Oct;37(5):664-675. doi: 10.1016/j.virs.2022.07.002. Epub 2022 Jul 6. Virol Sin. 2022. PMID: 35809785 Free PMC article.
-
Detecting virus-specific effects on post-infection temporal gene expression.BMC Bioinformatics. 2019 Mar 29;20(Suppl 3):129. doi: 10.1186/s12859-019-2653-4. BMC Bioinformatics. 2019. PMID: 30925863 Free PMC article.
-
Swine- Origin Influenza A (H1N1) Pandemic Revisited.Libyan J Med. 2009 Sep 1;4(3):123-5. doi: 10.4176/090720. Libyan J Med. 2009. PMID: 21483529 Free PMC article. No abstract available.
-
Viral surface geometry shapes influenza and coronavirus spike evolution through antibody pressure.PLoS Comput Biol. 2021 Dec 13;17(12):e1009664. doi: 10.1371/journal.pcbi.1009664. eCollection 2021 Dec. PLoS Comput Biol. 2021. PMID: 34898597 Free PMC article.
References
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources