Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2002 Jan 1;165(1):47-53.
doi: 10.1164/ajrccm.165.1.2101025.

Oscillations and noise: inherent instability of pressure support ventilation?

Affiliations
Comparative Study

Oscillations and noise: inherent instability of pressure support ventilation?

John R Hotchkiss Jr et al. Am J Respir Crit Care Med. .

Abstract

Pressure support ventilation (PSV) is almost universally employed in the management of actively breathing ventilated patients with acute respiratory failure. In this partial support mode of ventilation, a fixed pressure is applied to the airway opening, and flow delivery is monitored by the ventilator. Inspiration is terminated when measured inspiratory flow falls below a set fraction of the peak flow rate (flow cutoff); the ventilator then cycles to a lower pressure and expiration commences. We used linear and nonlinear mathematical models to investigate the dynamic behavior of pressure support ventilation and confirmed the predicted behavior using a test lung. Our mathematical and laboratory analyses indicate that pressure support ventilation in the setting of airflow obstruction can be accompanied by marked variations in tidal volume and end-expiratory alveolar pressure, even when subject effort is unvarying. Unstable behavior was observed in the simplest plausible linear mathematical model and is an inherent consequence of the underlying dynamics of this mode of ventilation. The mechanism underlying the observed instability is "feed forward" behavior mediated by oscillatory elevation in end-expiratory pressure. In both mathematical and mechanical models, unstable behavior occurred at impedance values and ventilator settings that are clinically realistic.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources