Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Sep;114(9):929-32.

Reversing drug resistance in the ovarian carcinoma cell line SKOV3/mdr1 in vitro by antisense oligodeoxynucleotides

Affiliations
  • PMID: 11780384

Reversing drug resistance in the ovarian carcinoma cell line SKOV3/mdr1 in vitro by antisense oligodeoxynucleotides

L Pan et al. Chin Med J (Engl). 2001 Sep.

Abstract

Objective: To investigate the effect of multidrug resistance gene 1 (mdr1) antisense oligodeoxynucleotides (ODNs) on reversing multidrug resistance in the drug resistant ovarian carcinoma cell line SKOV3/mdr1.

Methods: The ovarian carcinoma cell line SKOV3 transducted with a human multidrug resistance gene (mdr1) served as the drug resistant model (SKOV3/mdr1). The mdr1 antisense ODNs was transfected into SKOV3/mdr1 cells while mediated by lipofectamine. Reverse transcription-polymerase chain reaction (RT-PCR) was used to measure the expression and the amount of the mdr1 mRNA in the cells. The positive rate and function of the mdr1 gene product P-glycoprotein (Pgp) in the mdr1 antisense ODNs treated SKOV3/mdr1 cells were determined by flow cytometry and rhodamine 123 efflux. Drug resistance in the SKOV3/mdr1 cell line was observed by MTT assay and cell colony culture.

Results: The mdr1 mRNA level was decreased to about 60% of that of beta-actin after mdr1 antisense ODNs treatment. The Pgp positive rate of mdr1 antisense ODNs treated SKOV3/mdr1 cells decreased from 100% to 52.6% (P < 0.01). The intracellular rhodamine 123 retention was increased from 9.1% to 33.8% (P < 0.01). The chemoresistance to taxol decreased to 58% of SKOV3/mdr1 with mdr1 antisense ODN treatment. Compared with SKOV3/mdr1 cells in the control group, under a certain range of drug concentrations, the number of drug resistance colonies in mdr1 antisense ODNs treated SKOV3/mdr1 cells for taxol and doxorubicin decreased by 8.6 +/- 0.8 fold and 3.1 +/- 0.6 fold, respectively. Some non-specific functions during oligodeoxyncleotide treatment was also detected.

Conclusion: mdr1 expression in the SKOV1/mdr1 cell line was partially inhibited after mdr1 antisense ODNs treatment at the mRNA and protein level, increasing the chemotherapy sensitivity of this drug resistant ovarian carcinoma cell line.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources