Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Nov;19(6):1001-7.
doi: 10.1016/S0736-0266(01)00053-5.

Relative roles of microdamage and microfracture in the mechanical behavior of trabecular bone

Affiliations
Free article

Relative roles of microdamage and microfracture in the mechanical behavior of trabecular bone

O C Yeh et al. J Orthop Res. 2001 Nov.
Free article

Abstract

Compared to trabecular microfracture, the biomechanical consequences of the morphologically more subtle trabecular microdamage are unclear but potentially important because of its higher incidence. A generic three-dimensional finite element model of the trabecular bone microstructure was used to investigate the relative biomechanical roles of these damage categories on reloading elastic modulus after simulated overloads to various strain levels. Microfractures of individual trabeculae were modeled using a maximum fracture strain criterion, for three values of fracture strain (2%, 8%, and 35%). Microdamage within the trabeculae was modeled using a strain-based modulus reduction rule based on cortical bone behavior. When combining the effects of both microdamage and microfracture, the model predicted reductions in apparent modulus upon reloading of over 60% at an applied apparent strain of 2%, in excellent agreement with previously reported experimental data. According to the model, up to 80% of the trabeculae developed microdamage at 2% apparent strain, and between 2% and 10% of the trabeculae were fractured, depending on which fracture strain was assumed. If microdamage could not occur but microfracture could, good agreement with the experimental data only resulted if the trabecular hard tissue had a fracture strain of 2%. However, a high number of fractures (10% of the trabeculae) would need to occur for this case, and this has not been observed in published damage morphology studies. We conclude therefore that if the damage behavior of trabecular hard tissue is similar to that of cortical bone, then extensive microdamage is primarily responsible for the large loss in apparent mechanical properties that can occur with overloading of trabecular bone.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources