Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Jan 1;178(1):52-61.
doi: 10.1006/taap.2001.9327.

Acute exposure to methylmercury opens the mitochondrial permeability transition pore in rat cerebellar granule cells

Affiliations

Acute exposure to methylmercury opens the mitochondrial permeability transition pore in rat cerebellar granule cells

Tobi L Limke et al. Toxicol Appl Pharmacol. .

Abstract

Cerebellar granule cells are preferentially targeted during methylmercury (MeHg) poisoning. Following acute MeHg exposure, granule cells in culture undergo an increase in intracellular Ca2+ concentration ([Ca2+]i) that apparently contributes to cell death. This effect consists of several temporally and kinetically distinct phases. The initial elevation arises from release of Ca2+(i) stores; the second phase results from entry of Ca2+(e). In these experiments, we tested the hypothesis that release of mitochondrial Ca2+ through the mitochondrial permeability transition pore (MTP) contributes to the initial release of Ca2+(i). Neonatal rat cerebellar granule cells in culture and single cell microfluorimetry were used to examine MeHg-induced changes in [Ca2+]i and mitochondrial membrane potential (Psi(m)). Pretreatment with the MTP inhibitor cyclosporin A (CsA, 5 microM) delayed the initial phase of increased [Ca2+]i induced by 0.2 and 0.5 microM MeHg, but not 1.0 microM MeHg. CsA (5 microM) also delayed the irreversible loss of Psi(m) induced by 0.5 microM MeHg. Ca2+(e) was not required for either effect, because the effect of CsA on the first phase increase in [Ca2+]i and loss of Psi(m) was not altered in nominally Ca2+-free buffer. Increasing concentrations of MeHg (0.2-2.0 microM) caused increasing incidence of cell death at 24 h postexposure. Treatment with CsA provided protection against cytotoxicity at lower MeHg concentrations (0.2-0.5 microM), but not at higher MeHg concentrations (1.0-2.0 microM). Thus, the MTP appears to play a significant role in the cellular effects following acute exposure of cerebellar granule neurons to MeHg.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources