Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Jan;122(1):178-87.
doi: 10.1053/gast.2002.30346.

Sodium current in human jejunal circular smooth muscle cells

Affiliations

Sodium current in human jejunal circular smooth muscle cells

Adrian N Holm et al. Gastroenterology. 2002 Jan.

Abstract

Background & aims: Sodium channels are key regulators of neuronal and muscle excitability. However, sodium channels have not been definitively identified in gastrointestinal smooth muscle. The aim of the present study was to determine if a Na(+) current is present in human jejunal circular smooth muscle cells.

Methods: Currents were recorded from freshly dissociated cells using patch-clamp techniques. Complementary DNA (cDNA) libraries constructed from the dissociated cells were screened to determine if a message for alpha subunits of Na(+) channels was expressed. Smooth muscle cells were also collected using laser-capture microdissection and screened.

Results: A tetrodotoxin-insensitive Na(+) channel was present in 80% of cells patch-clamped. Initial activation was at -65 mV with peak inward current at -30 mV. Steady-state inactivation and activation curves revealed a window current between -75 and -60 mV. The Na(+) current was blocked by lidocaine and internal and external QX314. A cDNA highly homologous to SCN5A, the alpha subunit of the cardiac Na(+) channel, was present in the cDNA libraries constructed from dissociated cells and from smooth muscle cells collected using laser-capture microdissection.

Conclusions: Human jejunal circular smooth muscle cells express a tetrodotoxin-insensitive Na(+) channel, probably SCN5A. Whether SCN5A plays a role in the pathophysiology of human gut dysmotilities remains to be determined.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources