Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Jan 16;50(2):336-41.
doi: 10.1021/jf010230c.

Pasting properties of gamma-irradiated rice starches as affected by pH

Affiliations

Pasting properties of gamma-irradiated rice starches as affected by pH

Jinsong Bao et al. J Agric Food Chem. .

Abstract

Changes in the viscosity properties of gamma-irradiated rice starches (from 1 to 25% amylose content) from four genotypes (JY293, Jiayu 293; XS, Xiushui; ZF504, Zhefu 504; and ZXN, Zaoxiannuo) during pasting in water (pH 7) or in different pH solutions were studied using a rapid visco analyzer. Peak viscosity (PV) of all native rice starches was little affected at pH 4 and 10, while hot paste viscosity (HPV) and cool paste (final) viscosity (CPV) were generally lower at pH 4 and higher at pH 10 as compared with that at pH 7. The PV, HPV, and CPV of gamma-irradiated starches were higher at pH 4 and lower at pH 10 than pH 7. All viscosity characteristics of native rice starches were reduced in stronger alkali (pH 11.5) or acidic (pH 2.5) solutions. However, the gamma-irradiated starches were substantially higher at pH 2.5 but lower at pH 11.5, indicating that the effect of irradiation was highly pH dependent. The swelling volume of irradiated ZF504 and JY293 starch at all irradiation levels was higher at pH 4 than pH 7, while the values were lowest at pH 2.5. The irradiated ZXN and XS starches had higher swelling volumes at pH 4 and pH 2.5 than pH 7. Differential scanning calorimetry analysis showed that gamma-irradiation caused progressively lower gelatinization peak temperature (T(p)) and higher gelatinization range (T(r)) at pH 7. T(p) was higher and T(r) was lower at a much stronger acidic condition (pH 1) for both native and irradiated starches. The possibility of using viscosity changes in low pH for the detection of irradiated starch was discussed.

PubMed Disclaimer

Publication types

LinkOut - more resources