Smac is required for cytochrome c-induced apoptosis in prostate cancer LNCaP cells
- PMID: 11782351
Smac is required for cytochrome c-induced apoptosis in prostate cancer LNCaP cells
Abstract
Release of cytochrome c from mitochondria to cytosol has been identified as one of the central events of apoptosis. Direct injection of cytochrome c induces apoptosis in some but not in all cell types. We observed that LNCaP prostate cancer cells failed to undergo apoptosis induced by cytochrome c microinjections. Microinjection of cytochrome c with another mitochondrial protein, Smac, was sufficient to activate caspases, however. Smac is believed to function as a neutralizer of caspase inhibitors, and mass spectrometry analysis identified XIAP as a predominant Smac binding protein in LNCaP cells. These findings are consistent with a requirement for a release of Smac from mitochondria to enable caspase activation in prostate cells. Indeed, translocation of Smac from mitochondria to cytosol was observed in LNCaP cells that undergo apoptosis and was inhibited by epidermal growth factor, which is a survival factor for these cells. These results further emphasize the central role of mitochondria in the regulation of apoptosis in prostate cancer cells.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Other Literature Sources
Medical