Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Jan 1;62(1):313-22.

Sigma-2 receptor agonists activate a novel apoptotic pathway and potentiate antineoplastic drugs in breast tumor cell lines

Affiliations
  • PMID: 11782394

Sigma-2 receptor agonists activate a novel apoptotic pathway and potentiate antineoplastic drugs in breast tumor cell lines

Keith W Crawford et al. Cancer Res. .

Abstract

We have reported previously that sigma-2 receptors are expressed in high densities in a variety of tumor cell types (B. J. Vilner et al., Cancer Res., 55: 408-413, 1995) and that various sigma ligands have cytotoxic effects (B. J. Vilner et al., J. Neurosci., 15: 117-134, 1995). Other investigators have demonstrated increased expression of sigma-2 receptors in rapidly proliferating tumors (R. H. Mach et al., Cancer Res., 57: 156-161, 1997) and the ability of some sigma ligands to inhibit proliferation (P. J. Brent and G. T. Pang, Eur. J. Pharmacol., 278: 151-160, 1995). We demonstrate here the ability of sigma-2 receptor agonists to induce cell death by a mechanism consistent with apoptosis. In breast tumor cell lines that are sensitive (MCF-7) and resistant (MCF-7/Adr-, T47D, and SKBr3) to antineoplastic agents, incubation with the sigma-2 subtype-selective agonists CB-64D and CB-184 produced dose-dependent cytotoxicity (measured by lactate dehydrogenase release into medium). The EC(50) for this response was similar across cell lines, irrespective of p53 genotype and drug-resistance phenotype. CB-64D and the subtype nonselective sigma-2 agonists haloperidol and reduced haloperidol induced terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling staining in MCF-7 and T47D cells, indicating that cell death occurs via apoptosis. Apoptosis was also indicated by increases in Annexin V binding caused by CB-64D. In MCF-7 cells, cytotoxicity and Annexin V binding induced by the antineoplastics doxorubicin and actinomycin D was partially or completely abrogated by certain specific and general inhibitors of caspases. In contrast, caspase inhibitors had no effect on sigma-2 receptor-mediated (CB-64D and CB-184) cytotoxicity or Annexin V binding. Marked potentiation of cytotoxicity was observed when a subtoxic dose of CB-184 was combined with doxorubicin or actinomycin D, both in drug-sensitive (MCF-7) and drug-resistant (MCF-7/Adr-) cell lines. Haloperidol potentiated doxorubicin only in drug-resistant cells. These findings suggest the involvement of a novel p53- and caspase-independent apoptotic pathway used by sigma-2 receptors, which is distinct from mechanisms used by some DNA-damaging, antineoplastic agents and other apoptotic stimuli. These observations further suggest that sigma-2 receptors may be targets that can be therapeutically exploited in the treatment of both drug-sensitive and drug-resistant metastatic tumors.

PubMed Disclaimer

Publication types

MeSH terms