Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Jan 11;90(1):73-9.
doi: 10.1161/hh0102.102271.

beta-Adrenergic stimulation modulates ryanodine receptor Ca(2+) release during diastolic depolarization to accelerate pacemaker activity in rabbit sinoatrial nodal cells

Affiliations
Free article

beta-Adrenergic stimulation modulates ryanodine receptor Ca(2+) release during diastolic depolarization to accelerate pacemaker activity in rabbit sinoatrial nodal cells

Tatiana M Vinogradova et al. Circ Res. .
Free article

Abstract

It has long been recognized that activation of sympathetic beta-adrenoceptors (beta-ARs) increases the spontaneous beating rate of sinoatrial nodal cells (SANCs); however, the specific links between stimulation of beta-ARs and the resultant increase in firing rate remain an enigma. In the present study, we show that the positive chronotropic effect of beta-AR stimulation is critically dependent on localized subsarcolemmal ryanodine receptor (RyR) Ca(2+) releases during diastolic depolarization (CRDD). Specifically, isoproterenol (ISO; 0.1 micromol/L) induces a 3-fold increase in the number of CRDDs per cycle; a shift to higher CRDD amplitudes (from 2.00+/-0.04 to 2.17+/-0.03 F/F(0); P<0.05 [F and F(0) refer to peak and minimal fluorescence]); and an increase in spatial width (from 3.80+/-0.44 to 5.45+/-0.47 microm; P<0.05). The net effect results in an augmentation of the amplitude of the local preaction potential subsarcolemmal Ca(2+) transient that, in turn, accelerates the diastolic depolarization rate, leading to an increase in SANC firing rate. When RyRs are disabled by ryanodine, beta-AR stimulation fails to amplify subsarcolemmal Ca(2+) releases, fails to augment the diastolic depolarization rate, and fails to increase the SANC firing rate, despite preserved beta-AR stimulation-induced augmentation of L-type Ca(2+) current amplitude. Thus, the RyR Ca(2+) release acts as a switchboard to link beta-AR stimulation to an increase in SANC firing rate: recruitment of additional localized CRDDs and partial synchronization of their occurrence by beta-AR stimulation lead to an increase in the heart rate.

PubMed Disclaimer

Comment in

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources