Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Feb 15;77(4):405-19.

An experimental and theoretical study on the dissolution of mural fibrin clots by tissue-type plasminogen activator

Affiliations
  • PMID: 11787013

An experimental and theoretical study on the dissolution of mural fibrin clots by tissue-type plasminogen activator

David M Wootton et al. Biotechnol Bioeng. .

Abstract

During thrombolytic therapy and after recanalization is achieved, reduction in the volume of mural thrombi is desirable. Mural thrombi are known to contribute to rethrombosis and reocclusion. The lysis rate of mural thrombi has been demonstrated to increase with fluid flow in different experimental models, but the mechanisms responsible are unknown. An experimental and a theoretical study were developed to determine the contribution of outer convective transport to the lysis of mural fibrin clots. Normal human plasma containing recombinant tissue-type plasminogen activator (tPA; 0.5 microg/mL) was (re)perfused over mural fibrin clots with fluorescently labeled fibrin at low arterial, arterial, or higher wall shear stresses (4, 18, or 41 dyn/cm(2), respectively) and lysis was monitored in real time. Flow accelerated lysis, but significantly only at the highest shear stress: The average lysis front velocity was 3 x 10(-5) cm/s at 41 dyn/cm(2) vs. almost half of that at the lower shear stresses. Confocal microscopy showed fibrin fibers dissolving only in a narrow region close to the surface when permeation velocity was predicted to be low. A heterogeneous transport-reaction finite element model was used to describe mural fibrinolysis. After scaling the effects of outer and inner convection, inner diffusion, and chemical reactions, a simplified inner diffusion/reaction model was used. Correlation to fibrin lysis data in purified systems dictated higher rates of plasmin(ogen) and tPA adsorption onto fibrin and a decreased catalytic rate of plasmin-mediated fibrin degradation, compared with published parameters. At each shear stress, the model predicted a temporal pattern of lysis of mural fibrin (similar to that observed experimentally), and protease accumulation in a narrow fibrin region and significant lysis inhibition by plasma alpha(2)-antiplasmin (according to the literature). Increasing outer convection accelerated mural fibrinolysis, but the model did not predict the big increase in lysis rate at the highest shear stress. At higher than arterial flows, additional mechanisms not accounted for in the current model, such as fibrin collapse at the fibrin front, may regulate the lysis of mural clots and determine the outcome of thrombolytic therapy.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms