Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2001;7(12):646-55.
doi: 10.1053/bbmt.2001.v7.pm11787527.

Induction of stable long-term mixed hematopoietic chimerism following nonmyeloablative conditioning with T cell-depleting antibodies, cyclophosphamide, and thymic irradiation leads to donor-specific in vitro and in vivo tolerance

Affiliations
Free article
Comparative Study

Induction of stable long-term mixed hematopoietic chimerism following nonmyeloablative conditioning with T cell-depleting antibodies, cyclophosphamide, and thymic irradiation leads to donor-specific in vitro and in vivo tolerance

M Y Mapara et al. Biol Blood Marrow Transplant. 2001.
Free article

Abstract

Background: Successful transplantation of solid organs relies on long-term immunosuppression for the prevention of graft rejection. Donor-specific tolerance without the need for continuous immunosuppression can be observed after allogeneic BMT. However, its routine use for tolerance induction has been precluded so far by the high conditioning-related toxicity of standard BMT regimens. Our laboratory has recently established a cyclophosphamide (CTX) plus thymic irradiation (TI)-based nonmyeloablative conditioning protocol for the treatment of hematologic malignancies. We have recently described the successful clinical application of this approach for the induction of donor-specific tolerance in a patient receiving a living-related kidney transplant, which resulted in graft acceptance without long-term immunosuppression. The aim of this study was to evaluate the induction and maintenance of host-versus-graft tolerance following this CTX-plus-TI-based regimen in a mouse model.

Methods: Induction of mixed hematopoietic chimerism and development of donor-specific tolerance following the CTX-based nonmyeloablative conditioning regimen (200 mg/kg CTX, in vivo T-cell depletion [anti-CD4 monoclonal antibody (MoAb) GK1.5 and anti-CD8 MoAb 2.43], and 7 Gy TI) was studied in the fully major histocompatibility complex (MHC)-mismatched B10.A (H2a)-->B6 (H2b) strain combination.

Results: The conditioning regimen allowed allogeneic bone marrow engraftment and persistent (>30 weeks) mixed lymphohematopoietic chimerism in almost all recipients. TI was essential to allow engraftment and development of tolerance, which was evident in all lasting chimeras. Compared to animals receiving a similar TBI-based conditioning regimen, overall levels of chimerism were significantly lower in the CTX-plus-TI-conditioned animals. However, donor-specific tolerance in vitro and in vivo was evident in CTX-plus-TI-conditioned chimeras. Tolerance was associated with the presence of donor-type MHC class II+ cells in the thymus and deletion of donor-reactive cells, as determined by Mtv-8 and Mtv-9 superantigen-mediated deletion of Vbeta11+ and Vbeta5/1.2+ T cells.

Conclusion: Engraftment, long-term chimerism, and induction of donor-specific tolerance can be achieved using a nonmyeloablative CTX-based conditioning regimen in fully MHC-mismatched BMT recipients without the induction of GVHD.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources