Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Dec;6(6):429-40.
doi: 10.1177/108705710100600609.

High-density miniaturized thermal shift assays as a general strategy for drug discovery

Affiliations

High-density miniaturized thermal shift assays as a general strategy for drug discovery

M W Pantoliano et al. J Biomol Screen. 2001 Dec.

Abstract

More general and universally applicable drug discovery assay technologies are needed in order to keep pace with the recent advances in combinatorial chemistry and genomics-based target generation. Ligand-induced conformational stabilization of proteins is a well-understood phenomenon in which substrates, inhibitors, cofactors, and even other proteins provide enhanced stability to proteins on binding. This phenomenon is based on the energetic coupling of the ligand-binding and protein-melting reactions. In an attempt to harness these biophysical properties for drug discovery, fully automated instrumentation was designed and implemented to perform miniaturized fluorescence-based thermal shift assays in a microplate format for the high throughput screening of compound libraries. Validation of this process and instrumentation was achieved by investigating ligand binding to more than 100 protein targets. The general applicability of the thermal shift screening strategy was found to be an important advantage because it circumvents the need to design and retool new assays with each new therapeutic target. Moreover, the miniaturized thermal shift assay methodology does not require any prior knowledge of a therapeutic target's function, making it ideally suited for the quantitative high throughput drug screening and evaluation of targets derived from genomics.

PubMed Disclaimer

Publication types

LinkOut - more resources