Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Feb;282(2):H531-9.
doi: 10.1152/ajpheart.00552.2001.

Potassium channel openers protect cardiac mitochondria by attenuating oxidant stress at reoxygenation

Affiliations
Free article

Potassium channel openers protect cardiac mitochondria by attenuating oxidant stress at reoxygenation

Cevher Ozcan et al. Am J Physiol Heart Circ Physiol. 2002 Feb.
Free article

Abstract

K(+) channel openers have been recently recognized for their ability to protect mitochondria from anoxic injury. Yet the mechanism responsible for mitochondrial preservation under oxidative stress is not fully understood. Here, mitochondria were isolated from rat hearts and subjected to 20-min anoxia, followed by reoxygenation. At reoxygenation, increased generation of reactive oxygen species (ROS) was associated with reduced ADP-stimulated oxygen consumption, blunted ATP production, and disrupted mitochondrial structural integrity coupled with cytochrome c release. The prototype K(+) channel opener diazoxide markedly reduced mitochondrial ROS production at reoxygenation with a half-maximal effect of 29 microM. Diazoxide also preserved oxidative phosphorylation and mitochondrial membrane integrity, as indicated by electron microscopy and reduced cytochrome c release. The protective effect of diazoxide was reproduced by the structurally distinct K(+) channel opener nicorandil and antagonized by 5-hydroxydecanoic acid, a short-chain fatty acid derivative and presumed blocker of mitochondrial ATP-sensitive K(+) channels. Opener-mediated mitochondrial protection was simulated by the free radical scavenger system composed of superoxide dismutase and catalase. However, the effect of openers on ROS production was maintained in nominally K(+)-free medium in the presence or absence of the K(+) ionophore valinomycin and was mimicked by malonate, a modulator of the mitochondrial redox state. This suggests the existence of a K(+) conductance-independent pathway for mitochondrial protection targeted by K(+) channel openers. Thus the cardioprotecive mechanism of K(+) channel openers includes direct attenuation of mitochondrial oxidant stress at reoxygenation.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources