Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2002 Feb;282(2):F179-90.
doi: 10.1152/ajprenal.2002.282.2.F179.

Modulation of membrane traffic by mechanical stimuli

Affiliations
Free article
Review

Modulation of membrane traffic by mechanical stimuli

Gerard Apodaca. Am J Physiol Renal Physiol. 2002 Feb.
Free article

Abstract

All cells experience and respond to mechanical stimuli, such as changes in plasma membrane tension, shear stress, hydrostatic pressure, and compression. This review is an examination of the changes in membrane traffic that occur in response to mechanical forces. The plasma membrane has an associated tension that modulates both exocytosis and endocytosis. As membrane tension increases, exocytosis is stimulated, which acts to decrease membrane tension. In contrast, increased membrane tension slows endocytosis, whereas decreased tension stimulates internalization. In most cases, secretion is stimulated by external mechanical stimuli. However, in some cells mechanical forces block secretion. External stimuli also enhance membrane and fluid endocytosis in several cell types. Transduction of mechanical stimuli into changes in exocytosis/endocytosis may involve the cytoskeleton, stretch-activated channels, integrins, phospholipases, tyrosine kinases, and cAMP.

PubMed Disclaimer

Publication types

LinkOut - more resources