Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Jan 18;277(3):1755-61.
doi: 10.1074/jbc.m109656200.

Dynamic O-glycosylation of nuclear and cytosolic proteins: further characterization of the nucleocytoplasmic beta-N-acetylglucosaminidase, O-GlcNAcase

Affiliations
Free article

Dynamic O-glycosylation of nuclear and cytosolic proteins: further characterization of the nucleocytoplasmic beta-N-acetylglucosaminidase, O-GlcNAcase

Lance Wells et al. J Biol Chem. .
Free article

Abstract

beta-O-linked N-acetylglucosamine (O-GlcNAc) is an abundant and dynamic post-translational modification implicated in protein regulation that appears to be functionally more similar to phosphorylation than to classical glycosylation. There are nucleocytoplasmic enzymes for the attachment and removal of O-GlcNAc. Here, we further characterize the recently cloned beta-N-acetylglucosaminidase, O-GlcNAcase. Both recombinant and purified endogenous O-GlcNAcase rapidly release free GlcNAc from O-GlcNAc-modified peptide substrates. The recombinant enzyme functions as a monomer and has kinetic parameters (K(m) = 1.1 mm for paranitrophenyl-GlcNAc, k(cat) = 1 s(-1)) that are similar to those of lysosomal hexosaminidases. The endogenous O-GlcNAcase appears to be in a complex with other proteins and is predominantly localized to the cytosol. Overexpression of the enzyme in living cells results in decreased O-GlcNAc modification of nucleocytoplasmic proteins. Finally, we show that the enzyme is a substrate for caspase-3 but, surprisingly, the cleavage has no effect on in vitro O-GlcNAcase activity. These studies support the identification of this protein as an O-GlcNAcase and identify important interactions and modifications that may regulate the enzyme and O-GlcNAc cycling.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources