Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Jan 31;232(1-2):183-92.
doi: 10.1016/s0378-5173(01)00897-3.

Simulated intestinal fluid as transport medium in the Caco-2 cell culture model

Affiliations

Simulated intestinal fluid as transport medium in the Caco-2 cell culture model

F Ingels et al. Int J Pharm. .

Abstract

The Caco-2 model is widely used as a predictive tool for the oral absorption of drug candidates. Presently, transport experiments in the Caco-2 system are usually performed in 'HBSS-like' buffers. In this paper, we investigate the possibility of using simulated intestinal buffers as donor solvent during Caco-2 experiments. Toxicity assessment of these buffers on the monolayer showed that FASSIF was compatible with the Caco-2 model for at least 2 h. On the other hand, FESSIF was toxic to the monolayer. The functionality of the Caco-2 cells was assessed by determination of the transport of model compounds and the metabolic activity of hydrolases in presence of these buffers. Similar P(app) values for the (passive) theophyllin transport as well as for the (active) phenylalanine transport were obtained in TM and FASSIF. It was demonstrated that NaTC (present in FASSIF) had a P-gp inhibitory activity, as inclusion of NaTC in the apical compartment resulted in an increased absorptive and decreased secretory transport of CsA. The activity of the aminopeptidase enzyme was similar in both models. These results suggest that FASSIF can be used as an apical medium in the Caco-2 system. Since bile salts are also present in physiological conditions, the use of FASSIF may increase the relevance for the prediction of oral absorption using Caco-2 experiments.

PubMed Disclaimer

Publication types

LinkOut - more resources