Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2001 Apr:928:176-81.
doi: 10.1111/j.1749-6632.2001.tb05647.x.

Translocational inefficiency of intracellular proteins in senescence of human diploid fibroblasts

Affiliations
Review

Translocational inefficiency of intracellular proteins in senescence of human diploid fibroblasts

I K Lim et al. Ann N Y Acad Sci. 2001 Apr.

Abstract

In order to investigate signal transduction pathways and related changes of actin cytoskeleton organization in cellular senescence, H-ras double mutants--V12S35, V12G37, and V12C40--were constitutively expressed in human foreskin fibroblast (HDF). Senescent HDF cells as well as the H-ras mutant expressers accumulated p-Erk1/2 in the cytoplasm with increased MEK activity and failed to translocate it to nuclei on EGF stimulation. Senescent HDF cells, V12S35 and V12G37 expressers, revealed a failure to export actin fiber from nucleus to cytoplasm and also to form stress fibers. Perinuclear expression of Rac1 was prominent in the HDF cells and V12C40 expresser; however, in the V12S35 expresser, translocation of Rac1 from perinucleus to nucleus and strong expression of RhoA were obvious. In summary, the H-ras double mutant expressers induced premature senescence through the MEK pathway, accompanied by nuclear accumulation of actin and Rac1 proteins, cytoplasmic retention of p-Erk1/2, and marked induction of RhoA expression, suggesting the translocational inefficiency of the intracellular proteins in the senescent HDF cells.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources