Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Jan 15;397(2):206-16.
doi: 10.1006/abbi.2001.2703.

Degradation of L-glutamate dehydrogenase from Escherichia coli: allosteric regulation of enzyme stability

Affiliations

Degradation of L-glutamate dehydrogenase from Escherichia coli: allosteric regulation of enzyme stability

Michael R Maurizi et al. Arch Biochem Biophys. .

Abstract

L-glutamate dehydrogenase (GDH) is stable in exponentially growing Escherichia coli cells but is degraded at a rate of 20-30% per hour in cells starved for either nitrogen or carbon. GDH degradation is energy-dependent, and mutations in ATP-dependent proteases, ClpAP or Lon lead to partial stabilization. Degradation is inhibited by chloramphenicol and is completely blocked in relA mutant cells, suggesting that ribosome-mediated signaling may facilitate GDH degradation. Purified GDH has a single tight site for NADPH binding. Binding of NADPH in the absence of other ligands leads to destabilization of the enzyme. NADPH-induced instability and sensitivity to proteolysis is reversed by tri- and dicarboxylic acids or nucleoside di- and triphosphates. GTP and ppGpp bind to GDH at an allosteric site and reverse the destabilizing effects of NADPH. Native GDH is resistant to degradation by several purified ATP-dependent proteases: ClpAP, ClpXP, Lon, and ClpYQ, but denatured GDH is degraded by ClpAP. Our results suggest that, in vivo, GDH is sensitized to proteases by loss of a stabilizing ligand or interaction with an destabilizing metabolite that accumulates in starving cells, and that any of several ATP-dependent proteases degrade the sensitized protein.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources