Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Feb;143(2):511-6.
doi: 10.1210/endo.143.2.8648.

Early stimulation and late inhibition of extracellular signal-regulated kinase 1/2 phosphorylation by IGF-I: a potential mechanism mediating the switch in IGF-I action on skeletal muscle cell differentiation

Affiliations

Early stimulation and late inhibition of extracellular signal-regulated kinase 1/2 phosphorylation by IGF-I: a potential mechanism mediating the switch in IGF-I action on skeletal muscle cell differentiation

Saleh Adi et al. Endocrinology. 2002 Feb.

Abstract

IGF-I has a unique biphasic effect on skeletal muscle cell differentiation. Initially, IGF-I inhibits differentiation and promotes proliferation of skeletal myoblasts. Subsequently, IGF-I switches to stimulating differentiation of these cells. The mechanisms responsible for this switch in IGF action remain unknown. We have examined the role of extracellular signal-regulated kinase (Erk)1/2 signaling in mediating the early inhibitory and late stimulatory effects of IGF-I on the gene expression of myogenin, a skeletal muscle-specific transcription factor essential for myogenic differentiation. We find that, concurrent with its early inhibitory and late stimulatory effects on myogenin mRNA, IGF-I has a biphasic but opposite effect on phosphorylation of Erk1/2: initially, IGF-I increases and subsequently decreases the phosphorylation of Erk1/2 in comparison to untreated cells. Cotreatment with an inhibitor of Erk1/2 activation prevents the early IGF-I-stimulation of Erk1/2 phosphorylation and partially reverses IGF-I-inhibition of myogenin mRNA. Conversely, preventing the late IGF-I-induced decrease in Erk1/2 phosphorylation blocks IGF-I-stimulation of myogenin mRNA. Our data indicate that the time-dependent, opposing effects of IGF-I on skeletal muscle cell differentiation are mediated, at least in part, by biphasic but opposite effects on activation of the Erk1/2 MAPK signaling pathway.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources