Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Feb;143(2):636-46.
doi: 10.1210/endo.143.2.8615.

Estradiol (E2) enhances neurite outgrowth by repressing glial fibrillary acidic protein expression and reorganizing laminin

Affiliations

Estradiol (E2) enhances neurite outgrowth by repressing glial fibrillary acidic protein expression and reorganizing laminin

Irina Rozovsky et al. Endocrinology. 2002 Feb.

Abstract

Neuronal remodeling in response to deafferenting lesions in the brain can be enhanced by estradiol (E2). Astrocytes are among the targets of E2 in complex interactions with neurons and may support or inhibit neuronal remodeling. In ovariectomized female rats given entorhinal cortex lesions, E2 replacement inhibited the increase of glial fibrillary acidic protein (GFAP) protein. To model the role of E2 in these complex processes, we used the "wounding-in-a-dish" of astrocyte-neuron cocultures. Low physiological E2 (1 pM) blocks the wound-induced increase of GFAP expression (transcription and protein) and enhances neurite outgrowth. The transcriptional responses to E2 during wounding are mediated by sequences in the 5'-upstream region of the rat GFAP promoter. Concurrently, E2 reorganized astrocytic laminin into extracellular fibrillar arrays, which others have shown support neurite outgrowth. The inhibition of GFAP expression by E2 in this model is consistent with in vivo findings that E2 enhanced recovery from deafferenting cortical lesions by increased neurite outgrowth in association with decreased GFAP expression. More generally, we hypothesize that physiological variations in E2 levels modulate neuronal plasticity through direct effects on GFAP transcription that, in turn, modify GFAP-containing intermediate filaments and reorganize astrocytic laminin.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources