Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Feb;92(2):835-45.
doi: 10.1152/japplphysiol.00385.2001.

Kinematically irreversible acinar flow: a departure from classical dispersive aerosol transport theories

Affiliations
Free article

Kinematically irreversible acinar flow: a departure from classical dispersive aerosol transport theories

F S Henry et al. J Appl Physiol (1985). 2002 Feb.
Free article

Abstract

Current theories describe aerosol transport in the lung as a dispersive (diffusion-like) process, characterized by an effective diffusion coefficient in the context of reversible alveolar flow. Our recent experimental data, however, question the validity of these basic assumptions. In this study, we describe the behavior of fluid particles (or bolus) in a realistic, numerical, alveolated duct model with rhythmically expanding walls. We found acinar flow exhibiting multiple saddle points, characteristic of chaotic flow, resulting in substantial flow irreversibility. Computations of axial variance of bolus spreading indicate that the growth of the variance with respect to time is faster than linear, a finding inconsistent with dispersion theory. Lateral behavior of the bolus shows fine-scale, stretch-and-fold striations, exhibiting fractal-like patterns with a fractal dimension of 1.2, which compares well with the fractal dimension of 1.1 observed in our experimental studies performed with rat lungs. We conclude that kinematic irreversibility of acinar flow due to chaotic flow may be the dominant mechanism of aerosol transport deep in the lungs.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources