Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Winter;14(2):93-100.
doi: 10.1023/a:1012988728672.

Co-registration of EEG and MRI data using matching of spline interpolated and MRI-segmented reconstructions of the scalp surface

Affiliations

Co-registration of EEG and MRI data using matching of spline interpolated and MRI-segmented reconstructions of the scalp surface

C Lamm et al. Brain Topogr. 2001 Winter.

Abstract

Accurate co-registration of MRI and EEG data is indispensable for the correct interpretation of EEG maps or source localizations in relation to brain anatomy derived from MRI. In this study, a method for the co-registration of EEG and MRI data is presented. The method consists of an iterative matching of EEG-electrode based reconstructions of the scalp surface to scalp-segmented MRIs. EEG-electrode based surface reconstruction is achieved via spline interpolation of individually digitized 3D-electrode coordinates. In contrast to other approaches, neither fiducial determination nor any additional provisions (such as bite bars, other co-registration devices or head shape digitization) are required, and co-registration errors associated with inaccurate fiducial determination are avoided. The accuracy of the method was estimated by calculating the root-mean-square (RMS) deviation of spline interpolated and MRI-segmented surface reconstructions in 20 subjects. In addition, the distance between co-registered and genuine electrode coordinates was assessed via a simulation study, in which surface reconstruction was based on virtual electrodes determined on the scalp surface of a high-resolution MRI data set. The mean RMS deviation of surface reconstructions was 2.43 mm, and the maximal distance between any two matched surface points was 5.06 mm. The simulated co-registration revealed a mean deviation of genuine and co-registered electrode coordinates of 0.61 mm. It is concluded that surface matching using spline interpolated reconstructions of scalp surfaces is a precise and highly practicable method to co-register EEG and MRI data.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources