Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Feb;15(2):407-21.
doi: 10.1006/nimg.2001.0986.

Spatiotemporal independent component analysis of event-related fMRI data using skewed probability density functions

Affiliations

Spatiotemporal independent component analysis of event-related fMRI data using skewed probability density functions

J V Stone et al. Neuroimage. 2002 Feb.

Abstract

We introduce two independent component analysis (ICA) methods, spatiotemporal ICA (stICA) and skew-ICA, and demonstrate the utility of these methods in analyzing synthetic and event-related fMRI data. First, stICA simultaneously maximizes statistical independence over both time and space. This contrasts with conventional ICA methods, which maximize independence either over time only or over space only; these methods often yield physically improbable solutions. Second, skew-ICA is based on the assumption that images have skewed probability density functions (pdfs), an assumption consistent with spatially localized regions of activity. In contrast, conventional ICA is based on the physiologically unrealistic assumption that images have symmetric pdfs. We combine stICA and skew-ICA, to form skew-stICA, and use it to analyze synthetic data and data from an event-related, left-right visual hemifield fMRI experiment. Results obtained with skew-stICA are superior to those of principal component analysis, spatial ICA (sICA), temporal ICA, stICA, and skew-sICA. We argue that skew-stICA works because it is based on physically realistic assumptions and that the potential of ICA can only be realized if such prior knowledge is incorporated into ICA methods.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources