Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Mar;12(3):247-57.
doi: 10.1016/s0960-8966(01)00278-4.

A quantitative study of bioenergetics in skeletal muscle lacking utrophin and dystrophin

Affiliations

A quantitative study of bioenergetics in skeletal muscle lacking utrophin and dystrophin

M A Cole et al. Neuromuscul Disord. 2002 Mar.

Abstract

Muscle energetics and function were investigated in the hindlimb of mice lacking dystrophin (mdx), utrophin and dystrophin (utr-dys) and controls (C57Bl/10) using 31P and 1H magnetic resonance techniques, electrical nerve stimulation and direct biochemical analysis. At rest, [adenosine triphosphate] and [total creatine] were lowest in utr-dys, while [inorganic phosphate] was elevated. Calculated [adenosine diphosphate] was 3-fold higher in mdx and 5-fold higher in utr-dys than in controls, consistent with an increased adenosine triphosphate requirement for ion pump activity. During stimulation, force production was low only in utr-dys, and this was reflected in the bioenergetic changes. Initial recovery rates of [phosphocreatine] and [adenosine diphosphate] after stimulation were rapid in all groups, indicative of normal mitochondrial adenosine triphosphate production in utr-dys and mdx. Recovery of pH was slow in utr-dys. The data indicate that the severe abnormalities which are present in the absence of utrophin and dystrophin leave basic muscle energetics intact and appear confined to processes involving the sarcolemma.

PubMed Disclaimer

MeSH terms

LinkOut - more resources