Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Feb;14(2):325-46.
doi: 10.1162/08997660252741149.

The time-rescaling theorem and its application to neural spike train data analysis

Affiliations

The time-rescaling theorem and its application to neural spike train data analysis

Emery N Brown et al. Neural Comput. 2002 Feb.

Abstract

Measuring agreement between a statistical model and a spike train data series, that is, evaluating goodness of fit, is crucial for establishing the model's validity prior to using it to make inferences about a particular neural system. Assessing goodness-of-fit is a challenging problem for point process neural spike train models, especially for histogram-based models such as perstimulus time histograms (PSTH) and rate functions estimated by spike train smoothing. The time-rescaling theorem is a well-known result in probability theory, which states that any point process with an integrable conditional intensity function may be transformed into a Poisson process with unit rate. We describe how the theorem may be used to develop goodness-of-fit tests for both parametric and histogram-based point process models of neural spike trains. We apply these tests in two examples: a comparison of PSTH, inhomogeneous Poisson, and inhomogeneous Markov interval models of neural spike trains from the supplementary eye field of a macque monkey and a comparison of temporal and spatial smoothers, inhomogeneous Poisson, inhomogeneous gamma, and inhomogeneous inverse gaussian models of rat hippocampal place cell spiking activity. To help make the logic behind the time-rescaling theorem more accessible to researchers in neuroscience, we present a proof using only elementary probability theory arguments. We also show how the theorem may be used to simulate a general point process model of a spike train. Our paradigm makes it possible to compare parametric and histogram-based neural spike train models directly. These results suggest that the time-rescaling theorem can be a valuable tool for neural spike train data analysis.

PubMed Disclaimer

Publication types

LinkOut - more resources