Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Jan;223(1):85-95.
doi: 10.1002/dvdy.1236.

Opposing effects on TSC-22 expression by BMP and receptor tyrosine kinase signals in the developing feather tract

Affiliations
Free article

Opposing effects on TSC-22 expression by BMP and receptor tyrosine kinase signals in the developing feather tract

Cord E Dohrmann et al. Dev Dyn. 2002 Jan.
Free article

Abstract

TSC-22 (transforming growth factor-beta-stimulated clone 22) belongs to a family of leucine zipper transcription factors that includes sequences from invertebrates and vertebrates. The single Drosophila family member, encoded by the bunched gene, serves to integrate opposing bone morphogenic protein (BMP) and epidermal growth factor (EGF) signals during oogenesis. Similarly, mammalian TSC-22 expression is regulated by several families of secreted signaling molecules in cultured cells. Here, we show that chick TSC-22 is dynamically expressed in the condensing feather bud, as well as in many tissues of the chick embryo. BMP-2/4, previously shown to inhibit bud development, repress TSC-22 expression during feather bud formation in vivo. Noggin, a BMP antagonist, promotes TSC-22 expression. EGF, TGF-alpha, and fibroblast growth factor all promote both feather bud development and TSC-22 expression; each can promote ectopic feather buds that are regularly spaced between existing feather buds. Thus, TSC-22 is a candidate to integrate small imbalances in receptor tyrosine kinase and BMP signaling during feather tract development to generate stable and reproducible morphogenetic responses.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources