Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2002 Feb;111(1-2):47-60.
doi: 10.1016/s0925-4773(01)00600-1.

Complementary expression and neurite outgrowth activity of netrin-G subfamily members

Affiliations
Free article
Comparative Study

Complementary expression and neurite outgrowth activity of netrin-G subfamily members

Toshiaki Nakashiba et al. Mech Dev. 2002 Feb.
Free article

Abstract

Classical members of the UNC6/netrin family are secreted proteins which play a role as long-range cues for directing growth cones. We here identified in mice a novel member netrin-G2 which constitute a subfamily with netrin-G1 among the UNC6/netrin family. Both of these netrin-Gs are characterized by glycosyl phosphatidyl-inositol linkage onto cells, molecular variants presumably generated by alternative splicing and lack of any appreciable affinity to receptors for classical netrins. These genes are preferentially expressed in the central nervous system with complementary distribution in most brain areas, that is netrin-G1 in the dorsal thalamus, olfactory bulb and inferior colliculus, and netrin-G2 in the cerebral cortex, habenular nucleus and superior colliculus. Consistently, immunohistochemical analysis revealed that netrin-G1 molecules are present on thalamocortical but not corticothalamic axons. Thalamic and neocortical neurons extended long neurites on immobilized recombinant netrin-G1 or netrin-G2 in vitro. Immobilized anti-netrin-G1 antibodies altered shapes of cultured thalamic neurons. We propose that netrin-Gs provide short-range cues for axonal and/or dendritic behavior through bi-directional signaling.

PubMed Disclaimer

Similar articles

Cited by

Publication types

Associated data