Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Feb;111(1-2):61-73.
doi: 10.1016/s0925-4773(01)00601-3.

Impaired angiogenesis and endochondral bone formation in mice lacking the vascular endothelial growth factor isoforms VEGF164 and VEGF188

Affiliations
Free article

Impaired angiogenesis and endochondral bone formation in mice lacking the vascular endothelial growth factor isoforms VEGF164 and VEGF188

Christa Maes et al. Mech Dev. 2002 Feb.
Free article

Abstract

Vascular endothelial growth factor (VEGF)-mediated angiogenesis is an important part of bone formation. To clarify the role of VEGF isoforms in endochondral bone formation, we examined long bone development in mice expressing exclusively the VEGF120 isoform (VEGF120/120 mice). Neonatal VEGF120/120 long bones showed a completely disturbed vascular pattern, concomitant with a 35% decrease in trabecular bone volume, reduced bone growth and a 34% enlargement of the hypertrophic chondrocyte zone of the growth plate. Surprisingly, embryonic hindlimbs at a stage preceding capillary invasion exhibited a delay in bone collar formation and hypertrophic cartilage calcification. Expression levels of marker genes of osteoblast and hypertrophic chondrocyte differentiation were significantly decreased in VEGF120/120 bones. Furthermore, inhibition of all VEGF isoforms in cultures of embryonic cartilaginous metatarsals, through the administration of a soluble receptor chimeric protein (mFlt-1/Fc), retarded the onset and progression of ossification, suggesting that osteoblast and/or hypertrophic chondrocyte development were impaired. The initial invasion by osteoclasts and endothelial cells into VEGF120/120 bones was retarded, associated with decreased expression of matrix metalloproteinase-9. Our findings indicate that expression of VEGF164 and/or VEGF188 is important for normal endochondral bone development, not only to mediate bone vascularization but also to allow normal differentiation of hypertrophic chondrocytes, osteoblasts, endothelial cells and osteoclasts.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources