Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2002 Feb;300(2):355-60.
doi: 10.1124/jpet.300.2.355.

The ontogeny of human drug-metabolizing enzymes: phase I oxidative enzymes

Affiliations
Review

The ontogeny of human drug-metabolizing enzymes: phase I oxidative enzymes

Ronald N Hines et al. J Pharmacol Exp Ther. 2002 Feb.

Abstract

Although some patterns are beginning to emerge, our knowledge of human phase I drug-metabolizing enzyme developmental expression remains far from complete. Expression has been observed as early as organogenesis, but this appears restricted to a few enzymes. At least two of the enzyme families that are expressed in the fetal liver exhibit a temporal switch in the immediate perinatal period (e.g., CYP3A7 to CYP3A4/3A5 and FMO1 to FMO3), whereas others show a progressive change in isoform expression through gestation (e.g., the class I alcohol dehydrogenases). Many of the phase I drug-metabolizing enzyme exhibit dynamic perinatal expression changes that are regulated primarily by mechanisms linked to birth and secondarily to maturity. A few of these enzymes are not detectable until well after birth, suggesting that birth is necessary but not sufficient for the onset of expression (e.g., CYP1A2). Tissue-specific expression adds to the complexity during ontogeny. For example, CYP3A7 expression is restricted to the fetal liver. However, with few exceptions, complete temporal relationship information during development is not known. Furthermore, most studies have concentrated on hepatic expression and much less is known about extrahepatic developmental events.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources