Anaerobic microbial metabolism can proceed close to thermodynamic limits
- PMID: 11807560
- DOI: 10.1038/415454a
Anaerobic microbial metabolism can proceed close to thermodynamic limits
Abstract
Many fermentative bacteria obtain energy for growth by reactions in which the change in free energy (DeltaG') is less than that needed to synthesize ATP. These bacteria couple substrate metabolism directly to ATP synthesis, however, by classical phosphoryl transfer reactions. An explanation for the energy economy of these organisms is that biological systems conserve energy in discrete amounts, with a minimum, biochemically convertible energy value of about -20 kJ mol-1 (refs 1, 2, 3). This concept predicts that anaerobic substrate decay ceases before the minimum free energy value is reached, and several studies support this prediction. Here we show that metabolism by syntrophic associations, in which the degradation of a substrate by one species is thermodynamically possible only through removal of the end product by another species, can occur at values close to thermodynamic equilibrium (DeltaG' approximately 0 kJ mol-1). The free energy remaining when substrate metabolism halts is not constant; it depends on the terminal electron-accepting reaction and the amount of energy required for substrate activation. Syntrophic associations metabolize near thermodynamic equilibrium, indicating that bacteria operate extremely efficient catabolic systems.
Similar articles
-
Metabolic models to investigate energy limited anaerobic ecosystems.Water Sci Technol. 2009;60(7):1669-75. doi: 10.2166/wst.2009.224. Water Sci Technol. 2009. PMID: 19809129
-
Thermodynamic analysis of product formation in mesophilic acidogenesis of lactose.Biotechnol Bioeng. 2004 Sep 30;87(7):813-22. doi: 10.1002/bit.20190. Biotechnol Bioeng. 2004. PMID: 15334408
-
Upflow anaerobic sludge blanket reactor--a review.Indian J Environ Health. 2001 Apr;43(2):1-82. Indian J Environ Health. 2001. PMID: 12397675 Review.
-
Model to couple anaerobic process kinetics with biological growth equilibrium thermodynamics.Environ Sci Technol. 2011 Aug 15;45(16):6838-44. doi: 10.1021/es2009055. Epub 2011 Jul 19. Environ Sci Technol. 2011. PMID: 21740015
-
Life close to the thermodynamic limit: how methanogenic archaea conserve energy.Results Probl Cell Differ. 2008;45:123-52. doi: 10.1007/400_2006_026. Results Probl Cell Differ. 2008. PMID: 17713742 Review.
Cited by
-
Integration of absolute multi-omics reveals dynamic protein-to-RNA ratios and metabolic interplay within mixed-domain microbiomes.Nat Commun. 2020 Sep 18;11(1):4708. doi: 10.1038/s41467-020-18543-0. Nat Commun. 2020. PMID: 32948758 Free PMC article.
-
Enrichment of syngas-converting mixed microbial consortia for ethanol production and thermodynamics-based design of enrichment strategies.Biotechnol Biofuels. 2018 Jul 19;11:198. doi: 10.1186/s13068-018-1189-6. eCollection 2018. Biotechnol Biofuels. 2018. PMID: 30038664 Free PMC article.
-
The Acyl-Proteome of Syntrophus aciditrophicus Reveals Metabolic Relationships in Benzoate Degradation.Mol Cell Proteomics. 2022 Apr;21(4):100215. doi: 10.1016/j.mcpro.2022.100215. Epub 2022 Feb 19. Mol Cell Proteomics. 2022. PMID: 35189333 Free PMC article.
-
Desulfotomaculum and Methanobacterium spp. dominate a 4- to 5-kilometer-deep fault.Appl Environ Microbiol. 2005 Dec;71(12):8773-83. doi: 10.1128/AEM.71.12.8773-8783.2005. Appl Environ Microbiol. 2005. PMID: 16332873 Free PMC article.
-
Methane-producing microbial community in a coal bed of the Illinois basin.Appl Environ Microbiol. 2008 Apr;74(8):2424-32. doi: 10.1128/AEM.02341-07. Epub 2008 Feb 29. Appl Environ Microbiol. 2008. PMID: 18310416 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources