Multiple imputation for missing data
- PMID: 11807922
- DOI: 10.1002/nur.10015
Multiple imputation for missing data
Abstract
Missing data occur frequently in survey and longitudinal research. Incomplete data are problematic, particularly in the presence of substantial absent information or systematic nonresponse patterns. Listwise deletion and mean imputation are the most common techniques to reconcile missing data. However, more recent techniques may improve parameter estimates, standard errors, and test statistics. The purpose of this article is to review the problems associated with missing data, options for handling missing data, and recent multiple imputation methods. It informs researchers' decisions about whether to delete or impute missing responses and the method best suited to doing so. An empirical investigation of AIDS care data outcomes illustrates the process of multiple imputation.
Copyright 2002 John Wiley & Sons,
Similar articles
-
Missing data: an introductory conceptual overview for the novice researcher.Can J Nurs Res. 2005 Dec;37(4):156-71. Can J Nurs Res. 2005. PMID: 16541824 Review.
-
Handling missing data: a commonly encountered problem in quantitative research.Clin Nurse Spec. 2006 Nov-Dec;20(6):273-6. doi: 10.1097/00002800-200611000-00005. Clin Nurse Spec. 2006. PMID: 17149015 Review. No abstract available.
-
Multiple imputation for handling missing outcome data when estimating the relative risk.BMC Med Res Methodol. 2017 Sep 6;17(1):134. doi: 10.1186/s12874-017-0414-5. BMC Med Res Methodol. 2017. PMID: 28877666 Free PMC article.
-
Handling missing data in self-report measures.Res Nurs Health. 2005 Dec;28(6):488-95. doi: 10.1002/nur.20100. Res Nurs Health. 2005. PMID: 16287052 Review.
-
Using multiple imputation for analysis of incomplete data in clinical research.Nurs Res. 2002 Sep-Oct;51(5):339-43. doi: 10.1097/00006199-200209000-00012. Nurs Res. 2002. PMID: 12352784
Cited by
-
Individual, household and neighborhood risk factors for malaria in the Democratic Republic of the Congo support new approaches to programmatic intervention.Health Place. 2021 Jul;70:102581. doi: 10.1016/j.healthplace.2021.102581. Epub 2021 May 18. Health Place. 2021. PMID: 34020231 Free PMC article.
-
Prediction of successful weaning from renal replacement therapy in critically ill patients based on machine learning.Ren Fail. 2024 Dec;46(1):2319329. doi: 10.1080/0886022X.2024.2319329. Epub 2024 Feb 28. Ren Fail. 2024. PMID: 38416516 Free PMC article.
-
Vector autoregression: Useful in rare diseases?-Predicting organ response patterns in a rare case of secondary AA amyloidosis.PLoS One. 2023 Aug 10;18(8):e0289921. doi: 10.1371/journal.pone.0289921. eCollection 2023. PLoS One. 2023. PMID: 37561769 Free PMC article.
-
The pulmonary and autonomic effects of high-intensity and low-intensity exercise in diesel exhaust.Environ Health. 2018 Dec 13;17(1):87. doi: 10.1186/s12940-018-0434-6. Environ Health. 2018. PMID: 30541575 Free PMC article.
-
Machine Learning in Prediction of Bladder Cancer on Clinical Laboratory Data.Diagnostics (Basel). 2022 Jan 14;12(1):203. doi: 10.3390/diagnostics12010203. Diagnostics (Basel). 2022. PMID: 35054370 Free PMC article.
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources