Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Feb 1;129(1-2):203-10.
doi: 10.1016/s0166-4328(01)00344-8.

Does head-only exposure to GSM-900 electromagnetic fields affect the performance of rats in spatial learning tasks?

Affiliations

Does head-only exposure to GSM-900 electromagnetic fields affect the performance of rats in spatial learning tasks?

Diane Dubreuil et al. Behav Brain Res. .

Abstract

The rapid expansion of mobile communication has generated intense interest, but has also fuelled ongoing concerns. In both humans and animals, radiofrequency radiations are suspected to affect cognitive functions. More specifically, several studies performed in rodents have suggested that spatial learning can be impaired by electromagnetic field exposure. However, none of these previous studies have simulated the common conditions of GSM mobile phones use. This study is the first using a head-only exposure system emitting a 900-MHz GSM electromagnetic field (pulsed at 217 Hz). The two behavioural tasks that were evaluated here have been used previously to demonstrate performance deficits in spatial learning after electromagnetic field exposure: a classical radial maze elimination task and a spatial navigation task in an open-field arena (dry-land version of the Morris water maze). The performances of rats exposed for 45 min to a 900-MHz electromagnetic field (1 and 3.5 W/kg) were compared to those of sham-exposed and cage-control rats. There were no differences among exposed, sham, and cage-control rats in the two spatial learning tasks. The discussion focuses on the potential reasons that led previous studies to conclude that learning deficits do occur after electromagnetic field exposure.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources