Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1976 Nov 30;15(24):5199-204.
doi: 10.1021/bi00669a001.

Investigation of phosphatidylethanolamine bilayers by deuterium and phosphorus-31 nuclear magnetic resonance

Investigation of phosphatidylethanolamine bilayers by deuterium and phosphorus-31 nuclear magnetic resonance

J Seelig et al. Biochemistry. .

Abstract

The motion of the ethanolamine head group in unsonicated lipid bilayers above and below the phase transition is studied by means of deuterium and phosphorus magnetic resonance. For this purpose, dipalmitoyl-3-sn-phosphatidylethanolamine is selectively deuterated at the two ethanolamine carbon atoms. The deuterium quadrupole splittings of the corresponding bilayer phases are measured at pH 5.5 as a function of temperature. In addition, the phosphorus-31 chemical shift anisotropies of planor-oriented and randomly dispersed samples of dipalmitoyl-3-sn-phosphatidylethanolamine are measured at pH 5.5 and 11 by applying a proton-decoupling field. The knowledge of the static chemical shift tensor (Kohler, S.J., and Klein, M.P. (1976), Biochemistry 15, 967) provides the basis for a quantitive analysis of the head-group motion. The nuclear magnetic resonance data are consistent with a model in which the ethanolamine group is rotating flat on the surface of the bilayer with rapid transitions occurring between two enantiomeric conformations.

PubMed Disclaimer

Similar articles

Cited by

Substances