Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2002 Feb;24(1):152-62.
doi: 10.1006/prep.2001.1546.

High-level expression of human liver monoamine oxidase A in Pichia pastoris: comparison with the enzyme expressed in Saccharomyces cerevisiae

Affiliations
Comparative Study

High-level expression of human liver monoamine oxidase A in Pichia pastoris: comparison with the enzyme expressed in Saccharomyces cerevisiae

Min Li et al. Protein Expr Purif. 2002 Feb.

Abstract

The high-level expression, purification, and characterization of recombinant membrane-bound human liver monoamine oxidase A (MAO-A) in Pichia pastoris is described. Two liters of fermentation culture produces 1170 units (660 mg) of MAO-A. The enzyme is purified in a 35% yield, is homogeneous on denaturing gel electrophoresis, and exhibits a single species (60,512 +/- 6 Da) on electrospray mass spectrometry. It contains 1 mol of 8alpha-S-cysteinyl FAD/mole of enzyme and exhibits >95% functionality. In contrast, the Saccharomyces cerevisiae-expressed enzyme is partially processed by C-terminal serine removal as demonstrated by mass spectra. The amino termini of both P. pastoris- and S. cerevisiae-expressed MAO-A are acetylated on the N-terminal methionine. The steady-state kinetic properties of P. pastoris-expressed MAO-A are similar to those of S. cerevisiae-expressed MAO-A using the following substrates: phenethylamine, p-CF(3)-benzylamine, dopamine, serotonin, and kynuramine. Reductive titrations demonstrate that the recombinant enzyme is reduced by 1 mol of substrate or dithionite as expected for the two electron equivalents required for flavin reduction. Absorption and EPR spectra show no radical species in the resting enzyme while the anionic flavin radical is formed in 50% yield during the reductive titration with dithionite. These data demonstrate significant advantages in the heterologous expression of human MAO-A in P. pastoris compared with the published S. cerevisiae system in higher expression level (329 mg/L) and in a higher level of homogeneity of the isolated enzyme.

PubMed Disclaimer

Publication types

Substances

LinkOut - more resources