Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Mar;14(3):211-8.
doi: 10.1016/s0898-6568(01)00233-9.

Redox regulation of TNF-alpha biosynthesis: augmentation by irreversible inhibition of gamma-glutamylcysteine synthetase and the involvement of an IkappaB-alpha/NF-kappaB-independent pathway in alveolar epithelial cells

Affiliations

Redox regulation of TNF-alpha biosynthesis: augmentation by irreversible inhibition of gamma-glutamylcysteine synthetase and the involvement of an IkappaB-alpha/NF-kappaB-independent pathway in alveolar epithelial cells

John J Haddad et al. Cell Signal. 2002 Mar.

Abstract

The pro-inflammatory cytokines, including tumor necrosis factor (TNF)-alpha, contribute to the exacerbation of pathophysiological conditions in the lung. The regulation of cytokine gene transcription involves the reduction-oxidation (redox)-sensitive nuclear factor-kappaB (NF-kappaB), the activation of which is mediated through an upstream kinase that regulates the phosphorylation and subsequent degradation of inhibitory-kappaB (IkappaB)-alpha, the major cytosolic inhibitor of NF-kappaB. It was hypothesised that the lipopolysaccharide (LPS)-induced biosynthesis of TNF-alpha in vitro is regulated by redox equilibrium. Furthermore, the likely involvement of the IkappaB-alpha/NF-kappaB signalling transduction pathway in regulating LPS-induced TNF-alpha biosynthesis was unravelled. In a model of alveolar epithelial cells, we investigated the role of L-buthionine-(S,R)-sulfoximine (BSO), a specific and irreversible inhibitor of gamma-glutamylcysteine synthetase (gamma-GCS), the rate-limiting enzyme in glutathione (GSH) biosynthesis, in regulating LPS-mediated TNF-alpha production and the IkappaB-alpha/NF-kappaB pathway. Pretreatment with BSO, prior to exposure to LPS augmented, in a dose-dependent manner, LPS-induced TNF-alpha biosynthesis. In addition, BSO blockaded the phosphorylation of IkappaB-alpha, reduced its degradation, thereby allowing its cytosolic accumulation, and subsequently inhibited the activation of NF-kappaB. These results indicate that there are oxidant-initiated and redox-mediated mechanisms regulating TNF-alpha biosynthesis and that the IkappaB-alpha/NF-kappaB signal transduction pathway is redox-sensitive but differentially involved in redox-dependent regulation of cytokine signalling in the alveolar epithelium.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources