Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2002 Jan-Feb;17(1):19-42.
doi: 10.1002/bio.671.

The red-edge effects: 30 years of exploration

Affiliations
Review

The red-edge effects: 30 years of exploration

Alexander P Demchenko. Luminescence. 2002 Jan-Feb.

Abstract

In 1970, three laboratories independently made a discovery that, for aromatic fluorophores embedded into different rigid and highly viscous media, the spectroscopic properties do not conform to classical rules. The fluorescence spectra can depend on excitation wavelength, and the excited-state energy transfer, if present, fails at the "red" excitation edge. These red-edge effects were related to the existence of excited-state distribution of fluorophores on their interaction energy with the environment and the slow rate of dielectric relaxation of this environment. In these conditions the site-selection can be provided by variation of the energy of illuminating light quanta, and the behaviour of selected species can be followed as a function of time and other variables. These observations found extensive application in different areas of research: colloid and polymer science, molecular biophysics, photochemistry and photobiology. In particular, they led to the development of very productive methods of studying the dynamics of dielectric relaxations in protein and membranes, using the tryptophan emission and the emission of a variety of probes. These studies were extended to the time domain with the observation of new site-selective effects in emission intensity and anisotropy decays. They stimulated the emergence and development of cryogenic energy-selective and single-molecular techniques that became valuable tools in their own right in chemistry and biophysics research. Site-selection effects were discovered for electron-transfer and proton-transfer reactions if they depended on the dynamics of the environment. This review is focused on the progress in the field of red-edge effects, their applications and prospects.

PubMed Disclaimer

LinkOut - more resources