Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Feb;71(2):255-61.

Activation of phagocytic cell NADPH oxidase by norfloxacin: a potential mechanism to explain its bactericidal action

Affiliations
  • PMID: 11818446

Activation of phagocytic cell NADPH oxidase by norfloxacin: a potential mechanism to explain its bactericidal action

Rajaa El Bekay et al. J Leukoc Biol. 2002 Feb.

Abstract

The mechanisms underlying the bactericidal power of fluoroquinolones against intracellular parasites in host macrophages remain poorly understood. We have analyzed the effect of norfloxacin, a fluoroquinolone antibiotic, on the production of reactive oxygen intermediates (O(2)(*-) and H(2)O(2)) and NADPH oxidase activity in mouse macrophages. The generation of anion superoxide (O(2)(*-)) was found to be significantly greater in macrophages incubated with norfloxacin than in untreated controls. This enhancing effect of norfloxacin was dose-dependent and reached maximal values within 10 min after its addition. The O(2)(*-) generated was mainly intracellular, as determined by the use of specific dyes, such as lucigenin and luminol, and able to diffuse freely through the cell membrane. Also, the production of H(2)O(2) was increased in macrophages in response to norfloxacin. The positive effect of norfloxacin was associated to an enhanced mobilization of NADPH oxidase subunits p47(phox) and p67(phox) from the cytosol to the plasma membrane in phagocytic cells. The effect of the antibiotic persisted in vivo for several hours. These data support the notion that norfloxacin inhibits mycobacterial growth within phagocytic cells by enhancing intracellular production of O(2)(*-) and other reactive oxygen species.

PubMed Disclaimer

Publication types

LinkOut - more resources