Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Apr 5;277(14):12137-43.
doi: 10.1074/jbc.M110802200. Epub 2002 Jan 30.

Propionyl-coenzyme A synthase from Chloroflexus aurantiacus, a key enzyme of the 3-hydroxypropionate cycle for autotrophic CO2 fixation

Affiliations
Free article

Propionyl-coenzyme A synthase from Chloroflexus aurantiacus, a key enzyme of the 3-hydroxypropionate cycle for autotrophic CO2 fixation

Birgit E Alber et al. J Biol Chem. .
Free article

Abstract

The 3-hydroxypropionate cycle has been proposed as a new autotrophic CO(2) fixation pathway for the phototrophic green non-sulfur eubacterium Chloroflexus aurantiacus and for some chemotrophic archaebacteria. The cycle requires the reductive conversion of the characteristic intermediate 3-hydroxypropionate to propionyl-CoA. The specific activity of the 3-hydroxypropionate-, CoA-, K(+)-, and MgATP-dependent oxidation of NADPH in autotrophically grown cells was 0.09 micromol min(-1) mg(-1) protein, which was 2-fold down-regulated in heterotrophically grown cells. Unexpectedly, a single enzyme catalyzes the entire reaction sequence: 3-hydroxypropionate + MgATP + CoA + NADPH + H(+) --> propionyl-CoA + MgAMP + PP(i) + NADP(+) + H(2)O. The enzyme was purified 30-fold to near homogeneity and has a very large native molecular mass between 500 and 800 kDa, with subunits of about 185 kDa as judged by SDS-PAGE, suggesting a homotrimeric or homotetrameric structure. Upon incubation of this new enzyme, termed propionyl-CoA synthase, with the proteinase trypsin, the NADPH oxidation function of the enzyme was lost, whereas the enzyme still activated 3-hydroxypropionate to its CoA-thioester and dehydrated it to acrylyl-CoA. SDS-PAGE revealed that the subunits of propionyl-CoA synthase had been cleaved once and the N-terminal amino acid sequences of the two trypsin digestion products were determined. Two parts of the gene encoding propionyl-CoA synthase (pcs) were identified on two contigs of an incomplete genome data base of C. aurantiacus, and the sequence of the pcs gene was completed. Propionyl-CoA synthase is a natural fusion protein of 201 kDa consisting of a CoA ligase, an enoyl-CoA hydratase, and an enoyl-CoA reductase, the reductase domain containing the trypsin cleavage site. Similar polyfunctional large enzymes are common in secondary metabolism (e.g. polyketide synthases) but rare in primary metabolism (e.g. eukaryotic type I fatty acid synthase). These results lend strong support to the operation of the proposed pathway in autotrophic CO(2) fixation.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources