Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2001;29(4):373-91.
doi: 10.1615/critrevbiomedeng.v29.i4.10.

Relationship among biomechanical, biochemical, and cellular changes associated with osteoarthritis

Affiliations
Review

Relationship among biomechanical, biochemical, and cellular changes associated with osteoarthritis

F H Silver et al. Crit Rev Biomed Eng. 2001.

Abstract

Articular cartilage that lines the surface of long bones is a multilayered material. The superficial layer consists of collagen fibrils and chondrocytes that run parallel to the joint surface. In the deeper layers, the collagen fibrils are more randomly arranged and support vertical units termed chondrons containing rows of chondrocytes. In the deepest layers, the collagen fibrils run almost vertically and ultimately insert into the underlying subchondral bone. Osteoarthritis (OA) is a disease that affects articular cartilage and is characterized by enzymatic and mechanical breakdown of the extracellular matrix, leading to cartilage degeneration, exposure of subchondral bone, pain, and limited joint motion. Changes in mechanical properties of articular cartilage associated with OA include decreases in modulus and ultimate tensile strength. These changes parallel the changes observed after enzymatic degradation of either collagen or proteoglycans in cartilage. Results of recent viscoelastic studies on articular cartilage suggest that the elastic modulus of collagen and fibril lengths decrease in OA and are associated with a loss of the superficial zone and a decreased ability of articular cartilage to store elastic energy during locomotion. It is suggested that osteoarthritic changes to cartilage involve enzymatic degradation of matrix components and fibril fragmentation that is promoted by subsequent mechanical loading.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources