Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2001 Dec;2(12):1985-94.
doi: 10.1517/14656566.2.12.1985.

Botulinum toxin for the treatment of cervical dystonia

Affiliations
Review

Botulinum toxin for the treatment of cervical dystonia

R Tintner et al. Expert Opin Pharmacother. 2001 Dec.

Abstract

Cervical dystonia (CD) manifests clinically through involuntary spasms of neck muscles, producing abnormal head and neck movements and postures, which is often associated with pain. CD is the most common form of focal dystonia presenting to movement disorders clinics. Chemodenervation with botulinum toxin (BTX) has become the first-line treatment for CD, producing satisfactory relief of symptoms in > 80% of cases. Unresolved issues that may impact on the overall results include the method of selection for injection sites (clinical vs. electromyography), dosing, dilution and the role and relative efficacy of the different BTX serotypes. A guiding therapeutic principle of BTX injections is to achieve optimal results with the lowest possible dosage and frequency of administration. This strategy is critical in order to keep the risk of immunoresistance at a minimum. Development of antibodies that block the effects of BTX, usually associated with frequent injections of high doses, is the main reason for secondary unresponsiveness to this treatment. Although the mechanism of denervation at the neuromuscular junction by BTX is relatively well understood, the role of changes in muscle spindles and myopathic pain mechanisms, as well as secondary changes at the level of the basal ganglia, thalamus and cortex and their role in response to BTX, all need further exploration.

PubMed Disclaimer

MeSH terms

LinkOut - more resources