Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Jan;79(1):137-43.
doi: 10.1006/geno.2001.6674.

Genomic organization of the genes Gtf2ird1, Gtf2i, and Ncf1 at the mouse chromosome 5 region syntenic to the human chromosome 7q11.23 Williams syndrome critical region

Affiliations

Genomic organization of the genes Gtf2ird1, Gtf2i, and Ncf1 at the mouse chromosome 5 region syntenic to the human chromosome 7q11.23 Williams syndrome critical region

Dashzeveg Bayarsaihan et al. Genomics. 2002 Jan.

Abstract

We have recently isolated a mouse ortholog of human GTF2IRD1 that is related to GTF2I. GTF2IRD1 and GTF2I proteins are characterized by the presence of multiple helix-loop-helix domains and a leucine zipper motif. Both paralogs are closely linked and deleted hemizygously in individuals with Williams syndrome, a dominant genetic condition characterized by unique neurocognitive and behavioral features. We have isolated and analyzed the sequence of bacterial artificial chromosome clones from the syntenic mouse chromosome 5 region that contains Gtf2ird1 and Gtf2i as well as a neighboring gene, Ncf1. Gtf2ird1 is composed of 31 exons spanning >100 kb on mouse chromosome 5 and is located between Cyln2 and Gtf2i. Gtf2i is composed of 34 exons spanning about 77 kb. Ncf1, located downstream of Gtf2i, consists of 11 exons that extend over 8 kb. The gene organization of Gtf2ird1, Gtf2i, and Ncf1 is conserved in mice and humans, although the intronic regions are more compact in the mouse genome. The helix-loop-helix repeats of Gtf2ird1 and Gtf2i are encoded separately on adjacent exons and were generated by independent genomic rearrangements. These studies contribute to our knowledge of transcription factor defects and their pathogenesis in haploinsufficiency conditions.

PubMed Disclaimer

Publication types

LinkOut - more resources