Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Feb 8;316(1):35-49.
doi: 10.1006/jmbi.2001.5336.

Characterization of two highly similar Rad51 homologs of Physcomitrella patens

Affiliations

Characterization of two highly similar Rad51 homologs of Physcomitrella patens

Silvia Ayora et al. J Mol Biol. .

Abstract

The moss Physcomitrella patens, which is a land plant with efficient homologous recombination, encodes two Rad51 proteins (PpaRad51.1 and PpaRad51.2). The PpaRad51.1 and PpaRad51.2 proteins, which share 94 % identity between them, interact with themselves and with each other. Both proteins bind ssDNA and dsDNA in a Mg(2+) and pH-dependent manner, with a stoichiometry of one PpaRad51.1 monomer per 3(+/-1) nt or bp and one PpaRad51.2 monomer per 1(+/-0.5) nt or bp, respectively. At neutral pH, a 1.6-fold excess of both proteins is required for ssDNA and dsDNA binding. PpaRad51.1 and PpaRad51.2 show ssDNA-dependent ATPase activity and efficiently promote strand annealing in a nucleotide-independent but in a Mg(2+)-dependent manner. Both proteins promote joint-molecule formation, DNA strand invasion and are able to catalyse strand exchange in the presence of Mg(2+) and ATP. No further increase in the activities is observed when both proteins are present in the same reaction. None of the PpaRad51 gene products complement the DNA repair and recombination phenotype of Saccharomyces cerevisiae rad51delta mutants. However, PpaRad51.1 confers a dominant-negative DNA repair phenotype, and both PpaRad51 proteins reduce the levels of double-strand break-induced recombination when overexpressed in S. cerevisiae wt cells. These results suggest that both PpaRad51 proteins are bona fide Rad51 proteins that may contribute, in a different manner, to homologous recombination, and that they might replace ScRad51 in a hypothetical yeast protein complex inactivating different functions required for recombinational repair.

PubMed Disclaimer

Publication types

MeSH terms

Associated data

LinkOut - more resources