Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Feb 8;90(2):174-81.
doi: 10.1161/hh0202.103230.

Ca(2+) signaling in cardiac myocytes overexpressing the alpha(1) subunit of L-type Ca(2+) channel

Affiliations
Free article

Ca(2+) signaling in cardiac myocytes overexpressing the alpha(1) subunit of L-type Ca(2+) channel

Long-Sheng Song et al. Circ Res. .
Free article

Abstract

Voltage-gated L-type Ca(2+) channels (LCCs) provide Ca(2+) ingress into cardiac myocytes and play a key role in intracellular Ca(2+) homeostasis and excitation-contraction coupling. We investigated the effects of a constitutive increase of LCC density on Ca(2+) signaling in ventricular myocytes from 4-month-old transgenic (Tg) mice overexpressing the alpha(1) subunit of LCC in the heart. At this age, cells were somewhat hypertrophic as reflected by a 20% increase in cell capacitance relative to those from nontransgenic (Ntg) littermates. Whole cell I(Ca) density in Tg myocytes was elevated by 48% at 0 mV compared with the Ntg group. Single-channel analysis detected an increase in LCC density with similar conductance and gating properties. Although the overexpressed LCCs triggered an augmented SR Ca(2+) release, the "gain" function of EC coupling was uncompromised, and SR Ca(2+) content, diastolic cytosolic Ca(2+), and unitary properties of Ca(2+) sparks were unchanged. Importantly, the enhanced I(Ca) entry and SR Ca(2+) release were associated with an upregulation of the Na(+)-Ca(2+) exchange activity (indexed by the half decay time of caffeine-elicited Ca(2+) transient) by 27% and SR Ca(2+) recycling by approximately 35%. Western analysis detected a 53% increase in the Na(+)-Ca(2+) exchanger expression but no change in the abundance of ryanodine receptor (RyR), SERCA2, and phospholamban. Analysis of I(Ca) kinetics suggested that SR Ca(2+) release-dependent inactivation of LCCs remains intact in Tg cells. Thus, in spite of the modest cardiac hypertrophy, the overexpressed LCCs form functional coupling with RyRs, preserving both orthograde and retrograde Ca(2+) signaling between LCCs and RyRs. These results also suggest that a modest but sustained increase in Ca(2+) influx triggers a coordinated remodeling of Ca(2+) handling to maintain Ca(2+) homeostasis.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources