Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Feb 8;90(2):E17-24.
doi: 10.1161/hh0202.104530.

Carbon monoxide-releasing molecules: characterization of biochemical and vascular activities

Affiliations
Free article

Carbon monoxide-releasing molecules: characterization of biochemical and vascular activities

Roberto Motterlini et al. Circ Res. .
Free article

Abstract

Carbon monoxide (CO) is generated in living organisms during the degradation of heme by the enzyme heme oxygenase, which exists in constitutive (HO-2 and HO-3) and inducible (HO-1) isoforms. Carbon monoxide gas is known to dilate blood vessels in a manner similar to nitric oxide and has been recently shown to possess antiinflammatory and antiapoptotic properties. We report that a series of transition metal carbonyls, termed here carbon monoxide-releasing molecules (CO-RMs), liberate CO to elicit direct biological activities. Specifically, spectrophotometric and NMR analysis revealed that dimanganese decacarbonyl and tricarbonyldichlororuthenium (II) dimer release CO in a concentration-dependent manner. Moreover, CO-RMs caused sustained vasodilation in precontracted rat aortic rings, attenuated coronary vasoconstriction in hearts ex vivo, and significantly reduced acute hypertension in vivo. These vascular effects were mimicked by induction of HO-1 after treatment of animals with hemin, which increases endogenously generated CO. Thus, we have identified a novel class of compounds that are useful as prototypes for studying the bioactivity of CO. In the long term, transition metal carbonyls could be utilized for the therapeutic delivery of CO to alleviate vascular- and immuno-related dysfunctions. The full text of this article is available at http://www.circresaha.org.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources