Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Feb;87(2):196-214.

Proliferate and survive: cell division cycle and apoptosis in human neuroblastoma

Affiliations
  • PMID: 11836171

Proliferate and survive: cell division cycle and apoptosis in human neuroblastoma

Adriana Borriello et al. Haematologica. 2002 Feb.

Abstract

Background and objectives: Neuroblastoma is one of the most frequent childhood cancers and a major cause of death from neoplasias of infancy. Although a wealth of studies on its molecular bases have been carried out, little conclusive information about its origin and evolution is available.

Evidence and information sources: Some intriguing findings have correlated neuroblastoma development with aberrations of two pivotal cellular processes generally altered in human cancers, namely cell division cycle and apoptosis. Indeed, it has been reported that neuroblastoma cell lines show accumulation of Id2 protein, a factor which is able to hamper the pRb protein antiproliferative activity.

State of the art: The increased Id2 is due to N-myc gene amplification and overexpression, a phenomenon frequently observed in neuroblastoma and an important independent negative marker. Moreover, neuroblastoma cells are frequently characterized by increased levels of survivin, an inhibitor of the apoptotic response, and by a deficiency of procaspase 8, a key intermediate of the programmed cell death cascade. These two events, probably, make neuroblastomas more resistant to programmed cell death. These recent findings might suggest that neuroblastoma cells have acquired the capability to proliferate easily and die difficultly.

Perspectives: The mechanistic meaning of these data will be discussed in the present review. Moreover, we will suggest new therapeutic scenarios opened up by the described alterations of cell cycle and apoptosis engines.

PubMed Disclaimer

Publication types

MeSH terms

Substances