Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Feb 1;74(3):539-46.
doi: 10.1021/ac010819a.

Response times of carbon fiber microelectrodes to dynamic changes in catecholamine concentration

Affiliations

Response times of carbon fiber microelectrodes to dynamic changes in catecholamine concentration

B Jill Venton et al. Anal Chem. .

Abstract

The electrode response time and the measured concentrations during dynamic catecholamine changes were compared using constant potential amperometry and fast-scan cyclic voltammetry. The amperometric response to a rectangular pulse of catecholamine is more rectangular than the cyclic voltammetric response; however, the response times are very similar when, during cyclic voltammetry, the temporal lag due to adsorption and desorption of catecholamine to the electrode is removed by deconvolution. Deconvolution of cyclic voltammetry data was applied to stimulated dopamine release in vivo, allowing for modeling of release and uptake kinetics and to measure catecholamine release from single cells, resulting in better resolution of peaks from single vesicles. In vitro postcalibrations were performed to calculate concentrations of catecholamine measured with cyclic voltammetry and amperometry. The addition of 600 microM ascorbic acid to the postcalibration buffer, allowing a catalytic reaction to regenerate dopamine, resulted in similar calculated concentrations for stimulated release of dopamine using amperometry and cyclic voltammetry. Using deconvoluted cyclic voltammetry to remove the response time lag and adding ascorbic acid to the calibration buffer, the shape and concentration of dynamic catecholamine changes are very similar when measured with constant potential amperometry and cyclic voltammetry.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources